

 i

Mechanics Modeling Language (MechML)

Version 1.0

June 2016

ii
MechML, v1.0

Scope

This specification defines the Mechanics Modeling Language (MechML), revision 1.

The objective of MechML is to provide systems engineers, system architects, mechanical
engineers, and draughtsman with a modeling language with which design-related aspects of
a technical system can be modeled in a SysML model. One of the primary goals of MechML
is to support all engineering activities that are required to apply the FAS4M (Functional
Architectures of Systems for Mechanical Engineers) method. MechML was developed as
part of the research project FAS4M, which was funded by the German public sector
(Bundesministerium für Wirtschaft und Energie).

Copyright

Copyright © 2014-2016, oose Innovative Informatik eG

Copyright © 2014-2016, :em engineering methods AG

Copyright © 2014-2016, Karlsruher Institut für Technologie

Copyright © 2014-2016, Helmut-Schmidt-Universität, Universität der Bundeswehr, Hamburg

License

This work is licensed under a

Creative Commons Attribution-NoDerivatives 4.0 International
(CC BY-ND 4.0)

License.

Share — You are free to copy and redistribute the material in any medium or format for any
purpose, even commercially, under the following terms:

 Attribution — You must give appropriate credit, provide a link to the license, and indicate
if changes were made. You may do so in any reasonable manner, but not in any way
that suggests the licensor endorses you or your use.

 NoDerivatives — If you remix, transform, or build upon the material, you may not
distribute the modified material.

 No additional restrictions — You may not apply legal terms or technological measures
that legally restrict others from doing anything the license permits.

To view a full copy of this license, visit https://creativecommons.org/licenses/by-
nd/4.0/legalcode or send a letter to Creative Commons, PO Box 1866, Mountain View, CA
94042, USA.

Disclaimer of Warranty

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS"
AND MAY CONTAIN ERRORS OR MISPRINTS. THE COPYRIGHT OWNERS LISTED
ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE
OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE COPYRIGHT OWNERS BE LIABLE FOR ERRORS
CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS,
REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN

https://creativecommons.org/licenses/by-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nd/4.0/legalcode

iii
MechML, v1.0

CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of a system developed using this
specification is borne by you. This disclaimer of warranty constitutes an essential part of the
license granted to you to use this specification.

Trademarks

UML® and the OMG Logo® are registered trademarks of the Object Management Group,
Inc.

Object Management Group™, OMG™, Unified Modeling Language™, and OMG Systems
Modeling Language (OMG SysML™) are trademarks of the Object Management Group., Inc.

FAS is a registered word mark (“Wortmarke”) of oose Innovative Informatik eG in Germany.

All other products or company names mentioned are used for identification purposes only,
and may be trademarks or registered trademarks of their respective owners.

Related Documents

 OMG Systems Modeling Language™ (SysML®), Version 1.4. OMG document number:
formal/2015-06-03. http://www.omg.org/spec/SysML/1.4/

 OMG Unified Modeling Language™ (UML®), Version 2.5. OMG document number:
formal/15-03-01. http://www.omg.org/spec/UML/2.5/

http://www.omg.org/spec/SysML/1.4/
http://www.omg.org/spec/UML/2.5/

iv
MechML, v1.0

Table of Contents

Scope ... ii

Copyright .. ii

License ... ii

Disclaimer of Warranty ... ii

Trademarks ... iii

Related Documents ... iii

Table of Contents .. iv

1 Language Architecture ... 1

2 Functional View .. 2

2.1 Summary ... 2

2.2 Abstract Syntax ... 3

2.3 Definitions ... 3

2.3.1 SystemFunctionalArchitecture .. 3

2.3.2 FunctionalBlock .. 3

2.4 Notation ... 4

3 Principles.. 4

3.1 Summary ... 4

3.2 Abstract Syntax ... 4

3.3 Definitions ... 4

3.3.1 OperatingPrinciple .. 4

3.3.2 SolutionPrinciple .. 4

3.4 Notation ... 5

4 Principle View ... 5

4.1 Summary ... 5

4.2 Abstract Syntax ... 5

4.3 Definitions ... 5

4.3.1 SystemPrincipleSolution ... 5

4.3.2 PrincipleSolution .. 5

4.4 Notation ... 6

5 Conceptual View .. 6

5.1 Summary ... 6

5.2 Abstract Syntax ... 7

5.3 Definitions ... 7

v
MechML, v1.0

5.3.1 SystemConcept .. 7

5.3.2 ConceptElement ... 8

5.3.3 ConceptProperty .. 8

5.4 Notation ... 9

6 Component View ...10

6.1 Summary ..10

6.2 Abstract Syntax ..10

6.3 Definitions ..10

6.3.1 SystemBuildingStructure ...10

6.3.2 Component ...11

6.3.3 WorkingSurface ...11

6.3.4 Parameter ...11

6.3.5 Constraint ..11

6.3.6 ConstrainableElement {abstract} ...12

6.3.7 BuildingStructureProperty ...12

6.4 Notation ..12

7 Sketches ...13

7.1 Summary ..13

7.2 Abstract Syntax ..14

7.3 Definitions ..14

7.3.1 FreeSketch ..14

7.3.2 SketchableConcept {abstract} ...15

7.3.3 SketchableComponent {abstract} ..15

7.3.4 SketchSnippet ...15

7.4 Notation ..15

1

1 Language Architecture

MechML is a set of so-called stereotypes that are pooled in a special package, called a
profile, and provides additional extensions needed to address requirements in the domain of
mechanics and mechanical engineering, especially when applying the FAS4M method.

The MechML profile package imports the Systems Modeling Language (SysML) profile.
Since SysML itself is defined as a profile on the Unified Modeling Language (UML), the
SysML profile package imports the UML 2 metamodel (see Figure 1 - Package structure and
dependencies).

The stereotype «FunctionalBlock» is designed to be compatible with the stereotype of the
same name in the profile of the FAS -method1. In order to allow using MechML independent
of the FAS-profile, the profile is not imported here.

Figure 1 ‒ Package structure and dependencies

The discussion of the languages SysML and UML are out of scope of this specification.
These modeling languages are specified and discussed in detail in their respective OMG
specifications (see section 0, Related Documents).

If not otherwise specified (namely for FreeSketch) the MechML-notation uses the standard
visualization that UML defines for applied stereotypes and stereotype attributes.

1
 The FAS-Method is described in „Model-Based Systems Architecture“, Tim Weilkiens, Jesko G.

Lamm, Stephan Roth, Markus Walker, Wiley, 2015
The profile is available under http://fas-method.org/content/fas-plugins/

http://fas-method.org/content/fas-plugins/

2
MechML, v1.0

Figure 2 ‒ The four views of MechML

An overview of MechML’s most important language elements and their relationships can be
found in Figure 2. The stereotypes in this figure are arranged from left-to-right by the
methodological views, according to the approach as prescribed by the FAS4M method:

 Deriving a functional architecture from the system’s use cases (Functional View).
Creating this view is usually done with the help of the FAS method.

 Opening up the solution space using a morphological box (Principle View).

 Developing an overall concept (Conceptual View) for the system of interest.

 Developing a physical building structure (Component View) of the system of interest.

In each of those four views, exactly one element exists that represents the system of interest
according to the level of abstraction of this view.

2 Functional View

2.1 Summary

The Functional View is the view on the highest abstraction level and describes the result of a
functional analysis using the FAS (Functional Architectures of Systems) method.

SysML Blocks are defined as modular units of system description. They provide a general-
purpose capability to describe the architecture of a system, even from an abstract,
technology-independent and pure functional point of view. MechML provides stereotyped
Blocks that can be used to create the functional views that, for example, are required by the
FAS4M-method2.

2
 The FAS4M-method is described on http://www.fas4m.de

http://www.fas4m.de/

3
MechML, v1.0

2.2 Abstract Syntax

Figure 3 ‒ Functional View

2.3 Definitions

2.3.1 SystemFunctionalArchitecture

The SystemFunctionalArchitecture is an element that represents the system of interest on a
pure functional level. Its parts and connectors describe the functional architecture of the
system. There can be many SystemPrincipleSolutions that will be a specialization of it.

Relations

 Generalization
A SystemFunctionalArchitecture may be the target of a Generalization from a
SystemPrincipleSolution.

Constraints

 FunctionalBlock as Parts
{may only contain FunctionalBlocks}

2.3.2 FunctionalBlock

A Functional Block represents an element in a system model that supports a number of
functions.

In systems engineering, a function is an element that takes inputs (material, energy, and
information) and transforms them into outputs (material, energy, and information).

Note: MechML reuses the stereotype FunctionalBlock defined in the FAS-profile. It doesn’t
import this profile though, in order not to force people to use it. If both profiles are used, use
the Stereotype of the FAS-profile.

As with every other Block, FunctionalBlocks are also defined in a block definition diagram
(bdd) and used in an internal block diagram (ibd).

Attributes

 priority : Percent
Specifies the importance of the function for the system.

Relations

 Generalization
a FunctionalBlock may be the target of Generalizations from PrincipleSolutions

4
MechML, v1.0

2.4 Notation

Figure 4 – Graphical nodes used in functional views

3 Principles

3.1 Summary

A principle in systems engineering is a fundamental concept that serves as the basis for a
design decision, or for a chain of reasoning when system design decisions must be made.
MechML provides two kinds of principles: the SolutionPrinciple and the OperatingPrinciple.

3.2 Abstract Syntax

Figure 5 ‒ Principles

3.3 Definitions

3.3.1 OperatingPrinciple

A physical effect together with geometrical and material properties can form an
OperatingPrinciple that can be used to solve a construction problem. In the literature there
exist collections of such OperatingPrinciples. It is expected that a number of libraries of such
principles will eventually be available.

3.3.2 SolutionPrinciple

A SolutionPrinciple concretizes how an OperatingPrinciple will be used to solve the problem
at hand. It can also be used without specifying the OperatingPrinciple explicitly. Later it will
be the basis of PrincipleSolutions in a morphological box.

Attributes

 operatingPrinciple : OperatingPrinciple
The OperatingPrinciple on which the SolutionPrinciple is based.

5
MechML, v1.0

3.4 Notation

Figure 6 – Graphical nodes used for principles

4 Principle View

4.1 Summary

In mechanical engineering, the morphological analysis is a common and well-known method
to cope with multi-dimensional and non-quantifiable problems. The Swiss astronomer Fritz
Zwicky developed this approach to seemingly non-reducible complexity. The method, which
was originally used for the classification of astrophysical objects, is now very widespread as
a technique for fostering creativity, especially in the domain of mechanical engineering.

To support the engineer in morphological analysis, usually a tool called morphological box
(also known as “Zwicky Box”) is used. MechML provides elements to create a morphological
box in a system model.

4.2 Abstract Syntax

Figure 7 ‒ Principle View

4.3 Definitions

4.3.1 SystemPrincipleSolution

The SystemPrincipleSolution represents the system of interest in the Principle View. It is a
specialization of the SystemFunctionalArchitecture and inherits the functional architecture
defined there. All the functional parts will later get redefined by PrincipleSolutions in order to
select a set of Solutions that make up a potential system.

Relations

 Generalization
The SystemFunctionalArchitecture for which this is a potential solution.

Constraints

 PrincipleSolutions as Parts
{may only contain PrincipleSolutions}

4.3.2 PrincipleSolution

A PrincipleSolution describes how the functions of a FunctionalBlock could get supported in
principle. It is related via a Generalization to the FunctionalBlock. It can get visualized in a
FreeSketch.

6
MechML, v1.0

Relations

 Generalization
The FunctionalBlock for which this is a potential solution.

Attributes

 solutionPrinciple : SolutionPrinciple [0..1]
The underlying SolutionPrinciple of this PrincipleSolution

 operatingPrinciple : OperatingPrinciple [0..1]
The underlying OperatingPrinciple of this PrincipleSolution. This is used when no
SolutionPrinciple was defined.

 priority : Grade
How good does this solution support the intended functions?

 description : String
A textual description of the solution.

4.4 Notation

Figure 8 – Graphical nodes used for the principle view

The morphological box can be visualized in a block definition diagram, where the column on
the left side shows all the functional blocks, followed to the right by the PrincipleSolutions
(see following diagram). The selected combination of PrincipleSolutions (path through the
morphological box) can be made visible by drawing Composite Relationships for all of them
and bending them at appropriate points, so that all lines are graphically merged to one.

Figure 9 – Morphological box visualized with Composition Relationships

5 Conceptual View

5.1 Summary

A conceptual View is a view that describes an overall concept for the system of interest.
Several concepts might get explored before the final decision is taken, which one to build.

7
MechML, v1.0

Note: There are two possibilities to trace abstract PrincipleSolutions to more concrete
ConceptProperties and to even more concrete BuildingStructureProperties: Stereotype
Attributes and Allocation Relationships. In this specification both are described. The standard
SysML way to connect different levels of abstraction is the Allocation relationship. The
disadvantage of this relationship is, that it is allowed between any elements. Therefore the
tool cannot support the modeler by allowing only valid connections. With stereotype
properties the type is specified, so the tool will only allow elements of the correct type. A
model should always use the method consistently. Choose the method that is best supported
by the tool of your choice.

5.2 Abstract Syntax

Figure 10 ‒ Conceptual View

5.3 Definitions

5.3.1 SystemConcept

The SystemConcept represents the system in the conceptual view. It references the
SystemPrincipleSolution that is concretized by it and the SystemBuildingStructure that shows
the BuildingStructure that concretizes it. It can be depicted in a FreeSketch or be a part of a
Sketch defined by a SketchSnippet.

Relations

 Allocation from SystemPrincipleSolution
The source is the SystemPrincipleSolution, that is concretized by this SystemConcept.

 Allocation to SystemBuildingStructure
The target is the SystemBuildingStructure, that concretizes this SystemConcept.

Attributes

 systemPrincipleSolution : SystemPrincipleSolution [1]
The SystemPrincipleSolution that is concretized by the SystemConcept. Alternative to
the Allocation (see above).

 BuildingStructure : SystemBuildingStructure [*]
The SystemBuildingStructures that concretizes this SystemConcept. Alternative to the
Allocation (see above).

Constraints

 ConceptElements as Parts
{may only contain ConceptElements}

8
MechML, v1.0

5.3.2 ConceptElement

A ConceptElement is a part of a SystemConcept. It could be shown as a SketchSnippet in a
FreeSketch. It can define ports that are to be connected in the conceptual architecture. Port
Compatibility rules (as defined by SysML or additional own rules) can then be used to verify
the architecture.

Note: It is preferable not to attach Allocations here (this would be Allocation of definition).
They should instead be attached to the parts that are typed by ConceptElements (Allocation
of usage: only the usage of an element is allocated. Different usages could have different
Allocations).

5.3.3 ConceptProperty

This is an auxiliary stereotype, used to mark part properties of a SystemConcept that are
typed by ConceptElements. It carries some attributes, that allow traceability to the other
views. Also it can be the cause for a new FunctionalBlock (compositeFunction), that is
needed because of the decision for this ConceptElement. This new FunctionalBlock makes it
necessary to find new PrincipleSolutions and a new morphological sub box.

Allocations

 Allocation from PrincipleSolution
The source is the PrincipleSolution, that is concretized by this ConceptProperty.
Note: This is mixed allocation from definition to usage. When the conceptual view is
already very detailed, it could make sense to use the properties of the
SystemPrincipleSolution as sources of the allocation.

 Allocation to BuildingStructureProperty
The target is the BuildingStructureProperty, that concretizes this ConceptProperty.

Attributes

 compositeFunction : FunctionalBlock [0..1]
A new FunctionalBlock that becomes necessary because of the introduction of this
ConceptElement. It will later be the root for a new sub morphological box.

 principleSolution : PrincipleSolution [*]
The PrincipleSolutions that are concretized by the ConceptProperty. Alternative to the
Allocation (see above).

 buildingStructure : BuildingStructureProperty [*]
The SystemBuildingStructures that concretizes this SystemConcept. Alternative to the
Allocation (see above).

Constraints

 typed by ConceptElement
{must be typed by ConceptElement}

9
MechML, v1.0

5.4 Notation

Figure 11 – Graphical nodes used for conceptual views in bdds (Allocation)

Figure 12 – The same model as in Figure 11 with properties instead of allocations

Figure 13 – The same model as in Figure 11 with ibd

An ibd can show the ports of the ConceptElements and how they are connected.

Figure 14 – The same model as in Figure 12 with ibd

10
MechML, v1.0

6 Component View

6.1 Summary

The Component View is the most concrete of all four views. It shows a physical building
structure of the system of interest. It is the bridge into the world of Computer Aided Design
(CAD). From this view an empty CAD-structure can get generated that will be used as a
basis for the 3D-construction (a prototype for this generator has been part of the FAS4M
project). The MechML model will then hold CAD-IDs to reference the corresponding
elements of the CAD-structure. Vice versa the CAD-Model will hold references to the
MechML-model. This way a traceability from a concrete CAD-part to the MechML-component
back to the concept, principle, function and requirement is established. The common gap
between the interdisciplinary systems engineering level and the mechanical design is thus
bridged.

6.2 Abstract Syntax

Figure 15 ‒ Component View

Figure 16 ‒ Constraint

Figure 17 ‒ Traceability

6.3 Definitions

6.3.1 SystemBuildingStructure

The SystemBuildingStructure represents the system in the component view. It references the
SystemConcept that is concretized by it and the CAD-model that shows the concrete 3D-
design of the system.

Relations

 Allocation from SystemConcept
The source is the SystemConcept, that is concretized by this SystemBuildingStructure.

11
MechML, v1.0

Attributes

 concept : SystemConcept [1]
The SystemConcept that is concretized by this SystemBuildingStructure. Alternative to
the Allocation (see above).

 CAD-Model : String
A reference (URL, filename,…) to the CAD-model that shows the detailed 3-D
construction for this system.

Constraints

 Components and Constraints as Parts
{can only contain Components and Constraints}

6.3.2 Component

A Component is a part of a SystemBuildingStructure of another Component. It could be
shown as a SketchSnippet in a FreeSketch. It can define ports that are to be connected in
the physical architecture. Port Compatibility rules (as defined by SysML or additional own
rules) can then be used to verify the architecture.

It can be depicted as part of a FreeSketch defined by a SketchSnippet.

Note: It is preferable not to attach Allocations here (this would be Allocation of definition).
They should instead be attached to the parts that are typed by Components (Allocation of
usage: only the usage of an element is allocated. Different usages could have different
Allocations).

Attributes

 CSS-Property : String
Channel and support structure. Specifies the properties of the component that follow
from its use as such a structure.

6.3.3 WorkingSurface

Two Components interact, when they are connected via a working surface pair. One half of
this pair is modeled with the WorkingSurface.

Attributes

 WS-Property : String
Working surface. Specifies the properties of the WorkingSuface that follow from its use
as such a surface.

Constraints

 part of Component
{can only be part of a component}

6.3.4 Parameter

A Parameter is a value relevant for the 3D-construction, that is already known while modeling
the SystemBuildingStructure. Examples are angles, dimensions or material. It can refer to a
SketchSnippet of a FreeSketch, where the Parameter is used.

Constraints

 part of Component
{can only be part of a component}

6.3.5 Constraint

A Constraint describes aspects of the design like geometrical position, measurement, form or
position tolerance, surface quality, global orientation or fitting. It constrains one or more

12
MechML, v1.0

elements, which can be Components or WorkingSurfaces. It can refer to a SketchSnippet of
a FreeSketch, where the constrained elements are shown.

Attributes

 description : String
textual description of the Constraint.

6.3.6 ConstrainableElement {abstract}

Abstract base element for elements that can get constrained by a Constraint. There are two
specializations defined: Component and WorkingSurface.

6.3.7 BuildingStructureProperty

All parts of a SystemBuildingStructure or of a Component are BuildingStructureProperties.
They can get depicted as part of a FreeSketch referenced by a SketchSnippet.

Relations

 Allocation from ConceptProperty
The source is the ConceptProperty, that is concretized by this BuildingStructureProperty.

Attributes

 concept : ConceptProperty [0..*]
The ConceptProperty that is concretized by this BuildingStructureProperty. Alternative to
the Allocation (see above).

 CAD_ID : String[0..*]
An ID known in the CAD-model. Together with the CAD-Model property of the
SystemBuildingStructure this ID references a unique element in the CAD-model. There
can be many CAD_IDs, since a BuildingStructureProperty can have a multiplicity greater
than 1. Then the CAD-model will contain multiple CAD-elements with unique IDs that
correspond to one BuildingStructureProperty.

Constraints

 typed by building structure elements
{ must be typed by Component, WorkingSurface, Constraint or Parameter}

6.4 Notation

Figure 18 ‒ Graphical nodes used for component views in bdds (Allocation)

13
MechML, v1.0

Figure 19 – Part of the same model as in Figure 18 with properties instead of allocations

Figure 20 – The same model as in Figure 18 with ibd

An ibd can show the ports of the Components and how they are connected.

Figure 21 – Part of the same model as in Figure 19 with ibd

Figure 22 – Constraint

7 Sketches

7.1 Summary

Developing and discussing ideas and concepts using free, usually hand-drawn sketches, e.g.
on a flip chart, a white board, or a napkin, is a widespread approach in many engineering

14
MechML, v1.0

disciplines, especially in mechanical engineering. Furthermore, due to its high level of
abstraction, SysML and its model elements are unsuitable to convey precise information
about the shape and the detailed design (e.g. forms, distances, etc.) of a mechanical
component. For example, the spatial arrangement of SysML elements on a diagram’s canvas
is meaningless and says nothing about the spatial relationships of the described system or
component.

For this reason, MechML introduces special elements to incorporate drawings and sketches
into the model.

7.2 Abstract Syntax

Figure 23 ‒ Sketches

7.3 Definitions

7.3.1 FreeSketch

A FreeSketch can be used to incorporate a non-formal drawing (sketch) in the system model.
An element of type FreeSketch can hold or reference a drawing that typically has been
digitized using a digital camera or scanner.

FreeSketch is a stereotype defined on the UML metaclass Diagram.

Attributes

 content : String [0..1]
A representation of the image.

 format : String [0..1]
The format of the image (jpg, png or the like).

 location : String [0..1]
External location of the image file, if the image is not embedded in the model.

 ^modelElement : Element
The model element this Diagram refers to (attribute inherited from Metaclass Diagram).
FreeSketches could refer to PrincipleSolutions or SystemConcept.

Constraints

 PrincipleSolution or SystemConcept
{ modelElement must be of type PrincipleSolution or SystemConcept}

15
MechML, v1.0

7.3.2 SketchableConcept {abstract}

Abstract base element for elements that can get annotated by a SketchSnippet. Following
Specializations are defined: SystemConcept, ConceptElement, and ConceptProperty.

7.3.3 SketchableComponent {abstract}

Abstract base element for elements that can get annotated by a SketchSnippet. Following
Specializations are defined: Component, WorkingSurface, Parameter, Constraint, and
BuildingStructureProperty.

7.3.4 SketchSnippet

A SketchSnippet is a model element to mark snippets, i.e. areas or sections in a FreeSketch.
Thus, certain areas of a drawing can be referenced, and relationships to other model
elements can be created. It is based on the Metaclass Comment, which allows it to annotate
Elements and carry a text.

Attributes

 Polygon : String [0..1]
The Polygon enclosing a part of the Sketch.

 statesDescribed : State[0..*]
The states that are shown in the Snippet. For this purpose the SystemConcept needs to
have a StateMachine. The States in this StateMachine can get referenced here.

 ^body : String [0..1]
The property inherited from Comment, that can be used to describe the SketchSnippet.

 ^annotatedElement : Element [0,..*]
The property inherited from Comment, that lists the Elements that are shown in this
SketchSnippet

Constraints

 owned by Sketch
{owner.appliedStereotype = FreeSketch}

 annotates elements of concepts and building structures
{annotatedElement must be SketchableConcept or SketchableComponent}

7.4 Notation

The concrete syntax of the FreeSketch is a representation of the sketch itself, i.e. the
drawing will be shown.

The concrete syntax of a SketchSnippet is a polygon, i.e. a finite chain of straight line
segments closing in a loop to form a closed chain, that encloses the area of the FreeSketch
that should be referenced.

Note: There is no UML defined possibility to show images or polygons on a diagram. Here
we are leaving standard UML notation. Most tools however allow to include an image on any
diagram. It is expected that a tool fully supporting MechML will include some kind of
graphical editing capabilities like adjusting the image, creating polygons, detecting shapes on
the Sketch, locking Snippets to protect them against accidental moving, highlighting Snippets
that are selected, choosing the color of snippets and showing references to other model
elements when the mouse is hovering above it.

If you don’t have the tool support, you can still use the standard notation of Comments. If it is
possible to make them translucent, they could be used to mark rectangular regions on the
diagram. Clearly this is only a workaround, but it allows you to use the concepts described
here with any SysML-tool.

16
MechML, v1.0

Figure 24 ‒ Graphical nodes used for Sketches

The referenced Elements can be listed in the SketchSnippet symbol (here
ConceptElement1). If they can be shown on a block definition diagram (which is the basis for
this diagram), they could also be displayed directly with a dashed line connecting them to the
SketchSnippet (here Component1). The optional textual description appears below the list of
referenced elements.

	Scope
	Copyright
	License
	Disclaimer of Warranty
	Trademarks
	Related Documents
	Table of Contents
	1 Language Architecture
	2 Functional View
	2.1 Summary
	2.2 Abstract Syntax
	2.3 Definitions
	2.3.1 SystemFunctionalArchitecture
	Relations
	Constraints

	2.3.2 FunctionalBlock
	Attributes
	Relations

	2.4 Notation

	3 Principles
	3.1 Summary
	3.2 Abstract Syntax
	3.3 Definitions
	3.3.1 OperatingPrinciple
	3.3.2 SolutionPrinciple
	Attributes

	3.4 Notation

	4 Principle View
	4.1 Summary
	4.2 Abstract Syntax
	4.3 Definitions
	4.3.1 SystemPrincipleSolution
	Relations
	Constraints

	4.3.2 PrincipleSolution
	Relations
	Attributes

	4.4 Notation

	5 Conceptual View
	5.1 Summary
	5.2 Abstract Syntax
	5.3 Definitions
	5.3.1 SystemConcept
	Relations
	Attributes
	Constraints

	5.3.2 ConceptElement
	5.3.3 ConceptProperty
	Allocations
	Attributes
	Constraints

	5.4 Notation

	6 Component View
	6.1 Summary
	6.2 Abstract Syntax
	6.3 Definitions
	6.3.1 SystemBuildingStructure
	Relations
	Attributes
	Constraints

	6.3.2 Component
	Attributes

	6.3.3 WorkingSurface
	Attributes
	Constraints

	6.3.4 Parameter
	Constraints

	6.3.5 Constraint
	Attributes

	6.3.6 ConstrainableElement {abstract}
	6.3.7 BuildingStructureProperty
	Relations
	Attributes
	Constraints

	6.4 Notation

	7 Sketches
	7.1 Summary
	7.2 Abstract Syntax
	7.3 Definitions
	7.3.1 FreeSketch
	Attributes
	Constraints

	7.3.2 SketchableConcept {abstract}
	7.3.3 SketchableComponent {abstract}
	7.3.4 SketchSnippet
	Attributes
	Constraints

	7.4 Notation

